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ABSTRACT 

Analyzing and investigating the elastic behavior of frames after buckling is complicated. When a frame is 

subjected to a force exceeding the critical load, it begins to undergo large deformations. In this case, the 

theory of small deformations is no longer valid for the structure and the theory of large deformations should 

be used. Post-buckling analysis of elastic structures always requires solving a set of nonlinear differential 

equations based on equilibrium equations. The present work deals with the effect of beam-column joint 

flexibility on the elastic buckling load of plane steel frames and proposes a simplified approach to the 

evaluation of the critical buckling load of frames with semi-rigid connections according to the assumptions 

of the Elastica theory. In this study, the equations are simplified using the power series. The elastic buckling 

load is found to be strongly affected by semi-rigid joints and reveals that the proposed model is 

computationally very efficient with the expressions presented being general. The paper makes reference to 

the other researchers in comparing the results. 
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1. Introduction 

Analyzing the post-buckling elastic behavior of frames is complex. When a force is applied to a 

frame more than the critical load large deformations occur. In this case, the theory of small 

deformations is no longer valid for the structure and we must use the theory of large deformations. 

Post-buckling analysis of elastic structures always requires solving a set of nonlinear differential 

equations based on equilibrium equations. In designing members under axial force or axial force 

and flexural anchor in the structure, in addition to the yielding criterion, the buckling criterion is 

important. In such a way that if the length of the structural member is long or the member is thin, 

before yielding, buckling occurs in the member, which requires the member to be checked for 

possible buckling. Recent Advances in sstructural engineering with new material combinations and 

advances in mathematical modeling and more precision of numerical calculation tools, has led to 

the construction of more efficient and slenderer structural members. This is especially important in 

structures where their effective weight must be minimized, such as space structures, large openings 

in civil engineering structures, and offshore structures. However, the slenderness of the structural 

elements makes them more exposed to vibration and buckling, and therefore accurate nonlinear 

analysis is necessary to ensure the safety of these structures [1]. Post-buckling behavior analysis 

of beams and plane frames provides important information to design engineers. Equilibrium 

equations are the most common way to understand the behavior of a structure in post buckling. 

However, the non-linearity of the structure geometry is a big problem when the structure is under 

high displacement. Due to this challenge, post-buckling analysis using analytical methods is 

difficult and numerical methods, especially finite element methods, are used using computer 

modeling programs such as ANSYS and ABAQUS [2]. So far, many studies have been done on 

the elastic buckling of plane frames and its methods. The basis of these studies is mainly on the 

concept of elastic buckling of the frame under neutral equilibrium conditions. It has recently been 

shown that the initial elastic buckling for a rigid continuous frame can create an unstable state in 

the structure. Therefore, the performance of the structure after buckling is also very important and 

should be carefully examined. Built-up members are the most common shear-weak members used 

in structural engineering nowadays. The calculation of the elastic buckling load of built-up columns 

for different types of boundary conditions has been carried out by many researchers. The influence 

of shear deformations has been investigated by Bleich [3], Timoshenko and Gere [4], Aslani and 

Goel [5], Temple and Elmahdi [6,7], Galambos [8]. Gjelsvik [9] obtained solutions for members 

with boundary conditions commonly used in the structural industry. Banerjee and Williams [10] 

explained the reason why the elastic buckling load of members with springs of different rotational 

stiffness at their ends cannot be derived by the general equation suggested by Engesser [11] and 

used by Eurocode 3 [12]. Christopher and Bjorhovde [13] conducted analyses of a series of semi-

rigid frames, each with the same dimensions, applied loads and member sizes, but with different 

connection properties, explaining how connection properties affect member forces, frame stability, 

and inter-story drift. Jaspart and Maquoi [14] described the mode of application of the elastic and 

plastic design philosophies to braced frames with semi-rigid connections. The buckling collapse of 

steel reticulated domes with semi-rigid joints was investigated by Kato et al. [15] on the basis of a 

nonlinear elastic–plastic hinge analysis formulated for three-dimensional beam–columns with 

elastic, perfectly plastic hinges located at both ends and mid-span for each member. Lau et al. [16] 

performed an analytical study to investigate the behavior of sub assemblages with a range of semi-
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rigid connections under different test conditions and loading arrangements. They showed that 

significant variations in the M–ϕ response had a negligible effect on the load carrying capacity of 

the column and the behavior of the sub assemblages. 

Raftoyiannis [17] presented the effects of the joint flexibility and elastic bracing system on the 

buckling load. Mageirou and Gantes [18], Gantes and Mageirou [19] proposed a model of an 

individual column representing a multistory frame where the member contributions converging at 

the bottom and top ends of the column are represented by equivalent springs. Xu and Liu [20] 

proposed a method for the stability analysis of semi braced steel frames with the effect of semi-

rigid connections and the procedure of evaluating column effective length. Rokhi Shahri et al. [21] 

investigated the post-buckling behavior of the lateral unbraced frame with the help of Elastica 

theory. For this purpose, the first step is to analyses a cantilever column by the Maclaurin Series 

method. By examining the results of the post-buckling behavior of this column with the previous 

research, the verification of this method has been evaluated. In the following, due to the verification 

of the method, the large deformations and post-buckling behavior L-shaped frame are investigated. 

To analyses the frame, it is necessary to solve a nonlinear equation system. The Maclaurin Series 

method has been used to obtain nonlinear equations. With the help of the equations, the frame 

deformations diagrams have been plotted. Mathematica software is used to draw charts and solve 

nonlinear equations. In the following, with the modelling of the frame in Finite Element ABAQUS 

software, the comparison of the accuracy of the software results with this analysis has been checked 

and the convergence of the responses has been examined. Bagherzadeh et al. [22] used the power 

series to simplify the equations. The numerical issues of the critical buckling force are presented 

for prismatic and non-prismatic columns subjected to end force, and the effectiveness of this 

approach is verified for buckling analysis of tapered columns and the rate of accuracy is assessed.  

Many approaches are used to solve limitations to investigate the stability issues of elastic columns 

with changeable cross-sections subjected to different boundary conditions. The use of the special 

capability technique, for example, utilizing Bessel functions, emphatically relies upon the type of 

a customary differential condition with variable coefficients. The present work deals with the effect 

of beam-column joint flexibility on the elastic buckling load of plane steel frames and proposes a 

simplified approach to the evaluation of the critical buckling load of frames with semi-rigid 

connections according to the assumptions of the Elastic theory. 

 

2. Basic assumptions 

An L-shaped frame with joint supports at A and C is considered as (Figure 1(a)). The connection 

of the beam to the column at point B is semi-rigid. Assume spring torsional stiffness𝐾𝜃. We know 

the larger the 𝐾𝜃, the tighter the connection and in the limit state 𝐾𝜃 → ∞, the connection is rigid. 

Rigid connection in this case means that the amount of rotation and angle of the end of the column 

is exactly the same as the amount of rotation and angle of the end of the beam at B. On the other 

hand, if 𝐾𝜃 → 0, the connection tends to the joint which means that there is no relation between the 

rotation at the end of the column and the end of the beam at B. In this case, the bending moment at 

the junction is zero. The members of the frame are considered to be prismatic. The column length 

is 𝐿𝑐 and pinned to the support at point A. In case the load is 𝑃 ≥ 𝑃cr, where 𝑃cr is the critical load 

of column, the column can be positioned in the equilibrium state as shown in Figure 2. By accepting 

the simplistic assumption, the axial length change of the column is ignored. 
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Figure 2. Equilibrium state of column. 

 

The selected coordinate system for the BC beam is as Fig. 3. 

 

 
Figure 3. Beam coordinate system. 

 

 

 

 

 

Figure 1. L-shaped frame with a semi-rigid joint. 

(a) (b) 



Advance Researches in Civil Engineering  

ISSN: 2645-7229, Vol.5, No.2, pages: 45-56 

 

49 
 
 

 

3. Column Analysis 

The boundary conditions at point A are: 

 

𝑦𝑐(𝑠 = 0) = 0   (1) 

𝑀𝑐(𝑠 = 0) = 0 (2) 

 

Where 𝑦𝑐 is the horizontal displacement and 𝑀𝑐 is the internal bending moment. The McLaurin 

expansion of the slope function, 𝜃𝑐(𝑠) is as follows: 

 

𝜃𝑐(𝑠) = ∑𝑎𝑛
𝑐
𝑠𝑛

𝑛!

𝐺

𝑛=0

 (3) 

 

Where 

 

𝑎𝑛
𝑐 =

𝑑𝑛𝜃𝑐
𝑑𝑠𝑛

,        𝑠 = 0 (4) 

 

The zero bending moment in support A gives us the following relation: 

 

𝑎1
𝑐 = 0 (5) 

 

The slope at point A in Figure 2 is 𝜃0𝑐 (𝑎0
𝑐 = 𝜃0𝑐) and establishing static equilibrium equations for 

a part of the structure leads to the following relations. 

 

𝑀𝑐 = 𝑅𝑥𝑐 − 𝑃𝑐𝑦𝑐 

𝐸𝐼𝑐
𝑑𝜃𝑐
𝑑𝑠

= 𝑅𝑥𝑐 − 𝑃𝑐𝑦𝑐 
(6) 

 

Where 𝑥𝑐 is vertical displacement, 𝑦𝑐 is horizontal displacement and 𝐸𝐼𝑐 is the flexural rigidity of 

the column. To calculate McLaurin expansion coefficients, we derive from the sides of Eq. (6). 

 
𝑑

𝑑𝑠
[𝐸𝐼𝑐

𝑑𝜃𝑐
𝑑𝑠
] = 𝑅

𝑑𝑥𝑐
𝑑𝑠

− 𝑃𝑐
𝑑𝑦𝑐
𝑑𝑠

 (7) 

 
Considering that 

 
𝑑𝑦𝑐
𝑑𝑠

= 𝑆𝑖𝑛 𝜃𝑐 

𝑑𝑥𝑐
𝑑𝑠

= 𝐶𝑜𝑠 𝜃𝑐 

(8) 
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Eq. (7) may be written as: 

 
𝑑

𝑑𝑠
[𝐸𝐼𝑐

𝑑𝜃𝑐
𝑑𝑠
] = 𝑅𝐶𝑜𝑠 𝜃𝑐 − 𝑃𝑐𝑆𝑖𝑛 𝜃𝑐 (9) 

 
Where 

 

𝑃𝑐 = 𝑃 +
𝐿𝑐
𝐿𝑏
𝑅 (10) 

 

Where 𝐿𝑏 and 𝐿𝑐 are the length of beam and column, respectively. The latter equation gives the 

following expression with respect to the boundary conditions and according to Eqs. (3) and (5). 

 

𝐸𝐼𝑐𝑎2
𝑐 = 𝑅𝐶𝑜𝑠 𝜃0𝑐−𝑃𝑐𝑆𝑖𝑛 𝜃0𝑐 (11) 

 

The calculation of the coefficients 𝑎𝑛
𝑐  for 𝑛 >  2  results by sequential derivation from the parties 

of Eq. (9). 

 

𝑎𝑛+1
𝑐 =

𝑅𝑐𝑛 − 𝑃𝑐𝑏𝑛
𝐸𝐼𝑐

 (12) 

 

Where 

 

{
 

 𝑏𝑛 =
𝑑𝑛−1

𝑑𝑠𝑛−1
𝑆𝑖𝑛 𝜃𝑐 ,

𝑐𝑛 =
𝑑𝑛−1

𝑑𝑠𝑛−1
𝐶𝑜𝑠 𝜃𝑐 ,

        𝑠 = 0 (13) 

 

The bending moment of the end of the column at point B is obtained from the following equation: 

 

𝑀𝑐𝐵 = 𝐸𝐼𝑐
𝑑𝜃𝑐
𝑑𝑠

(𝑠 = 𝐿𝑐) (14) 

 

Substitution Eq. (3) into Eq. (14) leads to: 

 

𝑀𝑐𝐵 = 𝐸𝐼𝑐∑𝑎𝑛
𝑐

𝐿𝑐
𝑛−1

(𝑛 − 1)!

𝐺

𝑛=1

 (15) 

 

The slope at the end of the column at point B results from the following equation: 
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𝜃𝑐𝐵 = ∑𝑎𝑛
𝑐
𝐿𝑐
𝑛

𝑛!

𝐺

𝑛=0

 (16) 

 

4. Beam Analysis 

The boundary conditions at point C are: 

 

𝑦𝑏(𝜉 = 0) = 0 (17) 

𝑀𝑏(𝜉 = 0) = 0 (18) 

 

Where 𝑦𝑏  is the vertical displacement and 𝑀𝑏  is the internal bending moment. The McLaurin 

expansion of the slope function, 𝜃𝑏(𝜉) is as follows: 

 

𝜃𝑏(𝜉) = ∑𝑎𝑛
𝑏
𝜉𝑛

𝑛!

𝐺

𝑛=0

 (19) 

 

Where 

 

𝑎𝑛
𝑏 =

𝑑𝑛𝜃𝑏
𝑑𝜉𝑛

,        𝜉 = 0 (20) 

 

The zero bending moment in support C gives us the following relation: 

 

𝑎1
𝑏 = 0 (21) 

 

The slope at point C in Figure 4 is 𝜃0𝑏 (𝑎0
𝑏 = 𝜃0𝑏) and establishing static equilibrium equations for 

a part of the structure leads to the following relations. 

 

 
Figure 4. Equilibrium state of beam. 

 

𝑀𝑏 =
𝐿𝑐
𝐿𝑏
𝑅𝑥𝑏 − 𝑅𝑦𝑏 

(22) 

𝐸𝐼𝑏
𝑑𝜃𝑏
𝑑𝜉

=
𝐿𝑐
𝐿𝑏
𝑅𝑥𝑏 − 𝑅𝑦𝑏 

(23) 
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Where 𝑥𝑏 is horizontal displacement, 𝑦𝑏 is vvertical displacement and 𝐸𝐼𝑏 is the flexural rigidity 

of the beam. To calculate McLaurin expansion coefficients, we derive from the sides of Eq. (23). 

 

 

 
𝑑

𝑑𝜉
[𝐸𝐼𝑏

𝑑𝜃𝑏
𝑑𝜉

] =
𝐿𝑐
𝐿𝑏
𝑅
𝑑𝑥𝑏
𝑑𝜉

− 𝑅
𝑑𝑦𝑏
𝑑𝜉

 (24) 

 
Considering that 

 
𝑑𝑦𝑏
𝑑𝜉

= 𝑆𝑖𝑛 𝜃𝑏 

𝑑𝑥𝑏
𝑑𝜉

= 𝐶𝑜𝑠 𝜃𝑏 

 

(25) 

Eq. (24) may be written as: 

 
𝑑

𝑑𝜉
[𝐸𝐼𝑏

𝑑𝜃𝑏
𝑑𝜉

] =
𝐿𝑐
𝐿𝑏
𝑅𝐶𝑜𝑠 𝜃𝑏 − 𝑅𝑆𝑖𝑛 𝜃𝑏 (26) 

 

The latter equation gives the following expression with respect to the boundary conditions and 

according to Eqs (19) and (21). 

 

𝐸𝐼𝑏𝑎2
𝑏 =

𝐿𝑐
𝐿𝑏
𝑅𝐶𝑜𝑠 𝜃0𝑏 − 𝑅𝑆𝑖𝑛 𝜃0𝑏 (27) 

 

The calculation of the coefficients 𝑎𝑛
𝑏 for 𝑛 >  2  results by sequential derivation from the parties 

of Eq. (26). 

 

𝑎𝑛+1
𝑏 =

𝐿𝑐
𝐿𝑏
𝑅ℎ𝑛 − 𝑅𝑔𝑛

𝐸𝐼𝑏
 

(28) 

 

Where 

 

{
 
 

 
 𝑔𝑛 =

𝑑𝑛−1

𝑑𝜉𝑛−1
𝑆𝑖𝑛 𝜃𝑏 ,

ℎ𝑛 =
𝑑𝑛−1

𝑑𝜉𝑛−1
𝐶𝑜𝑠 𝜃𝑏 ,

        𝜉 = 0                                            (29) 

 

The bending moment of the end of the beam at point B is obtained from the following equation: 
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𝑀𝑏𝐵 = 𝐸𝐼𝑏
𝑑𝜃𝑏
𝑑𝜉

(𝜉 = 𝐿𝑏) (30) 

 

 

 

 

 

Substitution Eq. (19) into Eq. (30) leads to: 

 

𝑀𝑏𝐵 = 𝐸𝐼𝑏∑𝑎𝑛
𝑏

𝐿𝑏
𝑛−1

(𝑛 − 1)!

𝐺

𝑛=1

 (31) 

 

The slope at the end of the beam at point B results from the following equation: 

 

𝜃𝑏𝐵 =∑𝑎𝑛
𝑏
𝐿𝑏
𝑛

𝑛!

𝐺

𝑛=0

 (32) 

 

5. Equilibrium of joint B 

In torsion springs one can write: 

 

𝑀𝜃 = 𝐾𝜃𝛥𝜃 (33) 

 

Where 𝐾𝜃the stiffness of the torsion is spring and 𝛥𝜃 is the amount of rotation. The above equation 

can be written as follows for node B: 

 

𝑀𝑐𝐵 −𝑀𝑏𝐵 = 𝐾𝜃(𝜃𝑐𝐵 + 𝜃𝑏𝐵) (34) 

 

According to Figure 1(b), the following relation is obtained by writing the bending equation about 

point B: 

 

𝑃𝑐𝑦𝐿𝑐 + 𝑅𝑥𝐿𝑐 + 𝑅𝑦𝐿𝑏 −
𝐿𝑐
𝐿𝑏
𝑅𝑥𝐿𝑏 = 0 (35) 

 

Where 𝑦𝐿𝑐 and 𝑥𝐿𝑐 are horizontal and vertical displacement of the column, respectively and 𝑦𝐿𝑏 

and 𝑥𝐿𝑏 are vertical and horizontal displacement of the beam, respectively at point B which can be 

obtained with the following equations using the McLaurin series. 

 

𝑦𝐿𝑐 = ∫ Sin 𝜃𝑐 ds
𝐿𝑐

0

= ∫ (𝜃𝑐 −
𝜃𝑐
3

3!
+ ⋯) ds

𝐿𝑐

0

 (36) 
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𝑥𝐿𝑐 = ∫ Cos 𝜃𝑐  ds
𝐿𝑐

0

= ∫ (1 −
𝜃𝑐
2

2!
+ ⋯) ds

𝐿𝑐

0

 

𝑦𝐿𝑏 = ∫ Sin 𝜃𝑏 d𝜉
𝐿𝑏

0

= ∫ (𝜃𝑏 −
𝜃𝑏

3

3!
+⋯ ) d𝜉

𝐿𝑏

0

 

𝑥𝐿𝑏 = ∫ Cos 𝜃𝑏 d𝜉
𝐿𝑏

0

= ∫ (1 −
𝜃𝑏

2

2!
+ ⋯) d𝜉

𝐿𝑏

0

 

The substitution of the coefficients 𝑎𝑛
𝑐  and 𝑎𝑛

𝑏 in terms of 𝜃0𝑐, 𝜃0𝑏, 𝑃 and 𝑅 in the Eqs. (34, 35) 

provides the following equations. 

 

{
𝑓(𝑃, 𝑅, 𝜃0𝑐 , 𝜃0𝑏) = 0

𝑔(𝑃, 𝑅, 𝜃0𝑐, 𝜃0𝑏) = 0
 (37) 

 

According to the concept of neutral equilibrium in structural stability in the limit state(𝜃0𝑐 , 𝜃0𝑏) →
0, the applied load 𝑃 tends to 𝑃𝑐𝑟. 

 

6. Numerical example 

This example previously published [18, 19] is presented, for which the proposed approach is 

demonstrated and the results are compared and validated. Consider the frame of Figure 5 with a 

single span 𝐿 = 20 mand height ℎ =  10 m, having a column with HEB360 cross-section and a 

beam with IPE400 cross-section. The characteristics of the structural elements are given below 

 

For the beam {𝐸𝐼=48573 𝑘𝑁.𝑚
2

𝐸𝐴=896490 𝑘𝑁
} and for the column  {𝐸𝐼=90699 𝑘𝑁.𝑚

2

𝐸𝐴=1272600 𝑘𝑁
} 

 

 
Figure 5. The frame of example. 

 

Table 1. Comparison of the critical load values for G=12. 

Methods  𝑷𝒄𝒓(𝐤𝐍) 
𝑷𝒄𝒓 − 𝑷𝒄𝒓, 𝑴𝑬𝑭

𝑷𝒄𝒓, 𝑴𝑬𝑭
(%) 
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F.E.M- MSC-NASTRAN [18] 9027.06 0 

Ref. [18] 9027.30 0.0026 

Present study 9034.24 0.0795 

 

 

 

 

 

The column is considered to be pinned at the base. A concentrated load P is imposed on the beam–

column joint. The beam–column joint is considered to be semi-rigid, with a rotational stiffness of 

𝐾𝜃 =  150 kN.m/rad. The frame is made of steel with Young’s modulus𝐸 = 210 000 000 𝑘𝑁/
𝑚2. The frame of Figure 5 is analyzed using the proposed formulation by Wolfrom Mathematica 

software [23] compared to those given by the Ref. [18]. Table 1 gives the buckling load values 

obtained for different methods. 

 

7. Conclusion 

The presented example and comparison between the results gives a good correlation, suggesting 

that the proposed model is adequate and may be a useful tool in the analysis of steel frames with 

semi-rigid joints. This method can be introduced as a suitable method for analyzing post-buckling 

behavior of steel frames. Although achieving high accuracy requires the use of a large number of 

sentences in the McLaurin series, software limitations in some cases prevent this goal from being 

achieved, however the present method is much simpler to use. 
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