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ABSTRACT 

When the plate is under large lateral loads the maximum deflection of the thin plate is equal or larger than 

the thickness of plate. Because of these large displacements the mid-plane stretches, and hence the in-plane 

tensile stresses developed within the plate stiffen and add considerable load resistance to it. Due to the 

restrictions of analysis methods, researchers suggest using numerical methods for these kind of problems. 

Numerical methods includes Finite element method, Boundary element method, Finite difference method, 

Point collocation method, Ritz’s method, Galerkin’s method, etc.  Some of numerical methods trying to 

change the problem from solve partial differential equation to solve a system of differential equations.  In 

this paper circular plate with clamped edges under uniform loading and large deflections is researched by 

using point collocation method. So large deflection of plate is assumed as a function of small deflection of 

plate. This assumption convert the problem from solve partial differential equation to solve a system of 

differential equations that is easy to solve and has good convergence rate. Finally the results of this method 

are compared with the results from analyzing model in ABAQUS software and Timoshenko’s exact solution.   
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1. Introduction 

Structures that bear lateral loads, such as end plates and caps of pressure vessels, pump diaphragms, 

clutches and turbine discs, usually have a circular shape in practice. Therefore, many important 

applications of plate theory are included in the range of derived formulas for circular plates. If the 

deflection of the plate is small compared to its thickness, an approximate but acceptable theory for 

the bending of the plate under external loading can be provided using the following hypotheses: 

1- There is no deformation in the middle plane of the plate, this plane remains neutral when 

bending. 

2- The points of the plate that are perpendicular to the middle plane before bending remain in the 

same place after bending the plate. 

3- The stresses perpendicular to the middle plane of the plate can be ignored. 

By using these hypotheses, all stress components can be shown in terms of plate stiffness, which 

itself is a function of the x and y coordinates of the plate. The second equivalent assumption is that 

the effect of shear forces on the rise of the plates is not taken into account. This assumption is 

usually acceptable, but in some cases (such as the case where there is a hole in the plate), the effect 

of shear force is important, and in this case, it is necessary to make corrections in the theory of thin 

plates. Now, if in addition to lateral forces, external forces also act on the middle plane of the plate, 

the first assumption will not be true and it is necessary to consider the effect of the stresses acting 

on the middle plane of the plate on its bending. Adding some terms to the differential equation 

makes this problem possible. Only if the plate bending is reversible, the first assumption is 

completely acceptable. In other cases, plate bending is associated with mid-plate strain. But the 

calculations show that if the rise in the plate is insignificant compared to its thickness, the 

corresponding stresses in the plate can be ignored. In this case, nonlinear equations will be obtained 

and solving the problem will be much more difficult. If there is a large rise, a difference should be 

made between the non-moving edges and the edges that move freely in the plane of the plate and 

have a significant effect on the magnitude of the rise and the stresses of the plate. Complementary 

stresses, which are larger in number than the others, act against the lateral loads due to the curvature 

created in the middle plane of the plate. Therefore, part of the incoming load is transferred by 

hardness and part of it by membrane action of the plate. As a result, very thin plates that have little 

resistance to bending act as membranes; Except for the region of the edges of the network, which 

can be bent due to the existence of boundary conditions in the plate. In the case of reversibility of 

plate bending, an exception should be made for surfaces such as cylindrical surfaces. Because the 

rise in such a plate may be proportional to its thickness, without necessarily creating membrane 

stresses and contradicting the linear nature of bending theory. The creation of membrane stresses 

in a plane is provided that the domain of the plane is immobile in the direction of the plane and its 

slope is large enough. Therefore, in plates with low rise, the membrane forces created by the non-

moving edges of the plate can be ignored [1]. In this research, circular plate with clamped edges 

under lateral loads and large deflections is researched by using point collocation method. So large 

deflection of plate is assumed as a function of small deflection of plate. This assumption convert 

the problem from solve partial differential equation to solve a system of differential equations that 

is easy to solve and has good convergence rate. Finally the results of this method are compared 

with the results from analyzing model in ABAQUS software [2] and Timoshenko’s exact solution.  
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2. Background of research 

The nonlinear vibrations of plates were investigated by Chia in 1980 [3]. After Kirchhoff [4] 

founded the classical linear plane theory, Von Karman [5] expanded Kirchhoff's theory. The 

study of nonlinear plate dynamics was first investigated by Chu and Herrmann [6], in this 

study, the vibration of rectangular plates with a simple support was investigated. Mindlin plate 

theory [7] calculates shear strains, which is suitable for composite and thick plates. Leung and 

Mao [8] investigated rectangular plates with simple support with moving edges and also with 

non-moving edges using Galerkin's method. Kadiri and Beammar [9] introduced a simple 

analytical model for checking plates by using Chu and Herman's method. Berger [10] 

simplified the theory of non-linear plane by omitting the terms related to strain energy. Prathab 

and Pandalai [11] obtained favorable results for the nonlinear theory of plates by combining 

rotational inertia and correcting it for shear. Yosibash and Kirby [12] investigated three 

different types of conditions of the nonlinear theory of plates: in the first type, the sentences 

related to rotational inertia were omitted, in the second type, the rotational inertia was omitted 

and also the sentences depending on the time, the desired model was simplified. In the last 

type of condition, it was analyzed using all the deleted sentences. Amabili [13] compared the 

experimental and analytical results by applying different boundary conditions. He [14] Ritz, 

Leung and Mao energy method [7] Galerkin method, Ribrio [15] finite element model and 

Yuan et al. [16] applied the approximate method to analyze the nonlinear system governing 

the plates. Fourier series was used by Levy [17] to analyze simply supported plates under 

different boundary conditions. Timoshenko's book Theory of Plates and Shells [18] is 

considered as the first reference for the problems of plane orientation in most research works. 

Dastjerdi and Yazdanparast [19] applied SAPM method and the nonlinear partial differential 

equations have been transformed to the nonlinear algebraic equations system. Then, the 

nonlinear algebraic equations have been solved by using Newton–Raphson method. The 

obtained results of this study have been compared with the results of other references and the 

accuracy of the results has been shown. The effect of some important parameters on the results 

such as the location of the circular hole, the ratio of major to minor radiuses of elliptical plate, 

the size of circular hole and boundary conditions have been studied. It is concluded that 

applying the presented method is very convenient and efficient. So, it can be used for analyzing 

the mechanical behavior of elliptical plates, instead of relatively complicated formulations in 

elliptic coordinates system. Rokhi Shahri et al. [20] investigated the post-buckling behavior 

of the lateral unbraced frame with the help of Elastica theory. For this purpose, the first step 

is to analyses a cantilever column by the Maclaurin Series method. By examining the results 

of the post-buckling behavior of this column with the previous research, the verification of 

this method has been evaluated. In the following, due to the verification of the method, the 

large deformations and post-buckling behavior L-shaped frame are investigated. To analyses 

the frame, it is necessary to solve a nonlinear equation system. The Maclaurin Series method 

has been used to obtain nonlinear equations. With the help of the equations, the frame 

deformations diagrams have been plotted. Mathematica software is used to draw charts and 

solve nonlinear equations. In the following, with the modelling of the frame in Finite Element 

ABAQUS software, the comparison of the accuracy of the software results with this analysis 

has been checked and the convergence of the responses has been examined. Bagherzadeh et 

al. [21] used the power series to simplify the equations. The numerical issues of the critical 

buckling force are presented for prismatic and non-prismatic columns subjected to end force, 

and the effectiveness of this approach is verified for buckling analysis of tapered columns and 
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the rate of accuracy is assessed. The elastic buckling force of elastic structures shows that the 

introduced model is computationally extremely efficient with the details presented in general. 

This paper should be a basic reference to compare the results with other researches. 

 

3. Modelling process 

3.1. Finite element modeling 

In this section, the simulation of the plate will be done by using ABAQUS software. The circular 

plate is modelled under uniform loading. In the following, in order to compare the responses 

obtained from the method investigated in this paper, due to the lack of Timoshenko results in 

loadings greater than 11 (
4 4/ 11qa Eh   ), the software simulation is utilized in order to create a 

criterion for measuring the correctness of the responses. In the following, all the steps required for 

this task are given along with the Figures 1 to 5. 

 

 
Figure 1. The modeled of circular plate. 

 

 
Figure 2. The definition of boundary conditions. 
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Figure 3. The kind of boundary conditions. 

 

 
Figure 4. The mesh settings of modeled circular plate 
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Figure 5. The counter of displacement of modeled circular plate. 

 

3.2. Point collocation method 

In this section, the circular plate with retaining edges under loading and large deformations has 

been investigated using the approximate method of point collocation. Point collocation is a method 

that is used to construct a system of algebraic equations without using a predefined grid to discretize 

the domain. At first, the domain and boundary of the problem are displayed arbitrarily by a set of 

points, in order to obtain the variables of the solution field, a function of a suitable shape with 

unknown coefficients is assumed and placed in the governing equations of the problem, this 

assumption leads to solving differential equations with partial derivatives It will convert the 

machine to solve algebraic equations. Despite its simple analytical foundations, this method is 

rarely used today because the results of the analysis depend heavily on the selection of domain 

points. In this research, it was tried to control and legalize the way of choosing points by 

formulating the points. The problem in question is a circular plate which is investigated under two 

types of loading. At first, the plate was considered with a uniform loading q, and in order to 

approximate the shape function, the deflection of the plate in the case of large deformations was 

considered using the McLaren series, a coefficient of the deflection of the plate in the case of small 

deformations. Next, the effect of various factors in the point collocation method, such as the 

number of points, their location, and how they are placed in relation to each other, was investigated, 

and at the end, the same process was repeated for the plate with point loading in its center. In the 

following, the differential equations governing circular plates with large deformations are equal to 

Equation (1): 
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Where u is the lateral deformation, w is the transverse deformation and D is the bending stiffness 

of the plate. Due to the symmetry of the plane with respect to any hypothetical axis, the coordinates 

w and u are independent of the angle (Teta). The bending stiffness equation is expressed as follows: 

 

(2) 
 

3

212 1

Eh
D





 

 

Due to the existence of central symmetry and the dependence of the yield rate of the plate on r, 

therefore the yield ratio resulting from large to small deformations will be an unknown function in 

terms of r, so the function was assumed as a power series in terms of r and then the function of the 

appropriate shape was obtained such as Equation (3): 
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In order to solve the resulting system of nonlinear equations using the point collocation method, 

the solution of the problem as a function is considered as follows: 
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Which Wl indicate the large vertical displacement of the plate, Ws small displacement of the plate 

and an unknown coefficients that can be calculated using the point collocation method. The small 

displacement of the plate is equal to Equation (5): 
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The boundary conditions for the clamped plate are as follows: 
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That the membrane stresses (0) created at the edge of the receiver are assumed to be uniform. 
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4. Results and discussion 

In the first step, in order to check the correctness of the point collocation method, the convergence 

of the solution is checked for two different times. As seen in Figure 6, with the increase in the 

number of terms of the power series, the accuracy of the calculations increases and gradually the 

solution of the equation converges towards a constant number, which is a proof of the correctness 

of the solution of the equation. In Figure 6 (a), the changes are drawn for dimensionless load value 

3 and in Figure 6 (b), the diagram is drawn for dimensionless load 10. 

 

 
(a) 

 
(b) 

Figure 6. Changes in the transformation of large forms according to the number of power series sentences. 

 

In this part, the obtained responses of the proposed method and Timoshenko's large deformations 

are compared with each other. At first, the solution method in Timoshenko's large deformations 

book is written as a computer program and its results are shown in Figure 7. 
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Figure 7. Changes of deformation with load in Timoshenko's method. 

 

Now, these values with the results of the proposed method are compared with each other. In Figure 

8, the slight difference between these two methods is clear with 0.3  . (N is the number of 

sentences involved in the power series). In the following, in order to investigate accurately, the 

results are presented in Table 1. 

 

 

 
Figure 8. Comparison of Timoshenko's results and the present work 

 

 

 

 

 

 

 

 

 

 



Advance Researches in Civil Engineering  

ISSN: 2645-7229, Vol.5, No.1, pages: 70-85 

79 
 

Table 1. Comparison of Timoshenko's results and the present work. 

Error (%) Timoshenko 

0 /w h
 

Present Work 

0 /w h
 

4 4/qa Eh
 

1/52 0/1706 0/168 1 

0/92 0/3258 0/3228 2 

0/32 0/4603 0/4588 3 

0/80 0/5815 0/5768 4 

1/04 0/6868 0/6796 5 

1/16 1/0644 1/0520 10 

 

 

Considering the reasonableness of the responses and the correctness of the chosen method, in this 

part the conditions of using fewer points and how they are placed relative to each other are applied. 

 

 

4.1. To calculate exact response using two points 

Due to the convergence of the responses in the number of points higher than 7, in order to obtain 

the exact response using the two points, the location of the points becomes important in relation to 

each other. To find these points, due to the strong dependence of the responses on the load value, 

the dimensionless load is started by value 1 (
4 4/ 1qa Eh  ) and continuing until it is possible to 

find the response. one of the points as the center and the second point, as you can see in Figure 9, 

is considered as a ratio of the radius of the plate. As it can be seen, for this amount of load, there is 

no encounter with the response obtained by Timoshenko's method. This process is repeated for 

larger loads, too. A similar diagram for dimensionless load value 5 is given in Figure 10 (
4 4/ 5qa Eh  ). As it can be seen, considering the second point to the coordinates of 0.65 of the 

radius of the plate, the exact response of Timoshenko can be obtained. 

 

 
Figure 9. Dimensionless displacement changes according to the second point coordinate in dimensionless load value 

1 (
4 4/ 1qa Eh  ). 
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Figure 10. Dimensionless displacement changes according to the second point coordinate in dimensionless load 

value 5 (
4 4/ 1qa Eh  ) 

 

The mentioned method for loadings between 1 and 11 is considered and by checking the collision 

point with the exact response, a graph according to the loading and the characteristic of the second 

point is obtained. This diagram is drawn in Figure 11. It can be seen from the diagram that the two-

point power series can only be used for loads smaller than 11. Due to the specific trend of these 

points in the range of 3 to 11 values, it was fitted and in the following, the obtained Equation (7) 

can be used to calculate the desired point. 

 

 

Figure 11. Changes in the characteristic of the second point according to the amount of loading. 
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(7) 
4 4

0For / 11 / 0.022 0.77qa Eh r a x     

 

4.2. To calculate the exact response using three points 

In the previous part, a relationship was obtained for loads less than 11. Now, to calculate the 

solution of the equation for loads greater than 11, the number of points involved in the power series 

is increased by one. Due to a more detailed and logical investigation, the convergence solution as 

the comparison criterion is considered and compare this solution with the solution obtained from 

the modeled system in ABAQUS. In Figure 11, you can see changes in the dimensionless 

displacement of the plate according to the third point, in 10 different points. The selection of points 

is such that the first point of the center of the plate, the second numerical point of the points given 

in the figure guide and the third point of collision with the convergence solution can be selected. 

 

 
Figure 12. Dimensionless displacement changes according to the third point coordinate in dimensionless load value 

16 (
4 4/ 16qa Eh  ). 

 

Through the investigations, we found that the choice of the second coordinate depends on the load 

value; thus, for loads between 11 and 16, from 0.2 to 0.5 points, and for loads between 17 and 21, 

from 0.7 to 0.9 points, it gives the best response. Figure 13 shows examples of the graphs obtained 

for the second coordinate of 0.3 and 0.7 (respectively (a) and (b)) according to loading. In order to 

simplify the use of these diagrams, we have adapted a diagram to discrete points. The full 

description of these relationships for different points is given in Table 2. 
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(b) (a) 

Figure 13. Specific changes of the third point according to loading. 

 

 
Table 2. The third ordinate relationships according to loading. 

The third equation 

The 

second 

point 

4 4/qa Eh  

0.0094x2-0.22x+2.12 0.2 

11-16 
0.006x2-0.15x+1.65 0.3 

0.0012x2-0.03x+0.96 0.4 
-0.0072x2+0.17x-0.21 0.5 

0.0037x2-0.2x+2.7 0.7 
17-21 0.0002x2-0.011x+0.54 0.8 

-0.0071x2+0.29x-2.5 0.9 

x=
qa4

Eh
4⁄  

Table 3. The error of convergence response from finite element solution  

Error (%) Timoshenko 

0 /w h
 

Present Work 

0 /w h
 

4 4/qa Eh
 

1.206 1.136 1.1223 11.25 

1.224 1.176 1.1616 12 

1.288 1.227 1.2112 13 

1.341 1.275 1.2579 14 

1.431 1.321 1.3021 15 

1.466 1.364 1.344 16 

1.495 1.405 1.384 17 

1.585 1.445 1.4221 18 

1.639 1.483 1.4587 19 

1.659 1.519 1.4938 20 

1.693 1.5538 1.5275 21 

 

The use of the obtained relations leads to the solution of convergence using three points. The error 

of solving the equations with three points compared to the numerical solution of ABAQUS is 

compiled in Table 3. For loads greater than 21, it is not possible to use three points. To solve the 

equation for these values is possible by using more points. 
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4.3. To calculate the exact response with convergence points 

For loads greater than 21, we have to use more points. In this section, we will examine the 

appropriate and optimal range for selecting points according to the amount of loading. In order to 

find the optimal range of point selection, we start with a load value greater than 21 and consider 

the starting point coefficient to be 0.1 (in all the relations ahead, the zero point and the radius are 

applied by default, that is, to solve 9 points to only 7 points is no longer needed). In the following, 

we consider b as the end point and divide this interval into six equal parts (we considered the 

number of necessary points as 9 points, equivalent to convergence points). By changing the value 

of b, we obtain the response of the machine of equations and compare it with the response obtained 

from convergence with many points. It can be see that all the mentioned steps in Figure 14. It is 

clear that the best solution occurs at the point 0.6, which means that we divide the interval from 

0.1 to 0.6 into 6 equal parts and together with the zero and one points, we solve the system of 

equations and this solution is the closest solution. is the amount of convergence. 

 

 
Figure 14. The last point's characteristic according to the dimensionless displacement of the plate in the load value 

25 (
4 4/ 25qa Eh  ). 

 

We repeat the same process for larger loads and plot the obtained results in terms of the amount of 

load. Figure 15 shows this process, for the ease of its use, the relationship governing the points has 

also been obtained. These changes can be used up to the dimensionless load equal to 45, and for 

larger loads, we have to use all the points of the interval, so that the interval from zero to the radius 

of the plate is divided into at least 7 equal parts and we use the obtained numbers in the equation 

machine. Table 4 summarizes the extracted relationships. 
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Figure 15. Characteristic of the last point according to loading. 

 

 
Table 4. Summary of relationships for calculating division points according to loading. 

The equation Points 
4 4/qa Eh  

-0.022x+0.7714 2 3-11 

0.0094x2-0.22x+2.12 0.2 

3 11-16 
0.006x2-0.15x+1.65 0.3 

0.0012x2-0.03x+0.96 0.4 

-0.0072x2+0.17x-0.21 0.5 

0.0037x2-0.2x+2.7 0.7 

3 17-21 0.0002x2-0.011x+0.54 0.8 

-0.0071x2+0.29x-2.5 0.9 

-0.0004x2+0.04x-0.15 
*Start 

0.1 
9 21-45 

1 9 >45 

 

 

* The interval between 0.1 to the end of the interval into 6 equal parts are divided, 7 points are 

obtained. x=
qa4

Eh
4⁄  

 

5. Conclusion 

The use of the approximate method of point collocation in solving the investigated problems led to 

acceptable results and formulated outputs for use in uniform loading values, so that the error rate 

in the calculation of the plate deflection was evaluated to be less than 2%. It was tried to control 

the way of selecting the points by reaching the functional formulas for the coordinates of the 

selected points and increase the advantage of using point collocation method. 
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